New Sphere Methods for Linear Programs
نویسنده
چکیده
A new method being developed for solving linear programs is discussed in this tutorial. This method uses matrix inversion operations sparingly, and it thus seems well suited to solve large-scale problems and those that may not have the property of being very sparse.
منابع مشابه
A new view on fuzzy automata normed linear structure spaces
In this paper, the concept of fuzzy automata normed linear structure spaces is introduced and suitable examples are provided. ;The ;concepts of fuzzy automata $alpha$-open sphere, fuzzy automata $mathscr{N}$-locally compact spaces, fuzzy automata $mathscr{N}$-Hausdorff spaces are also discussed. Some properties related with to fuzzy automata normed linear structure spaces and fuzzy automata $ma...
متن کاملEfficient linear programming algorithm to generate the densest lattice sphere packings.
Finding the densest sphere packing in d-dimensional Euclidean space R(d) is an outstanding fundamental problem with relevance in many fields, including the ground states of molecular systems, colloidal crystal structures, coding theory, discrete geometry, number theory, and biological systems. Numerically generating the densest sphere packings becomes very challenging in high dimensions due to ...
متن کاملError analysis of a Galerkin method to solve the forward problem in MEG using the boundary element method
Sources of brain activity, e.g. epileptic foci, can be localized with Magnetoencephalography (MEG) measurements by recording the magnetic field outside the head. For a successful surgery a very high localization accuracy is needed. The most often used conductor model in the source localization is an analytic sphere, which is not always adequate, and thus a realistically shaped conductor model i...
متن کاملA new method to determine a well-dispersed subsets of non-dominated vectors for MOMILP problem
Multi-objective optimization is the simultaneous consideration of two or more objective functions that are completely or partially inconflict with each other. The optimality of such optimizations is largely defined through the Pareto optimality. Multiple objective integer linear programs (MOILP) are special cases of multiple criteria decision making problems. Numerous algorithms have been desig...
متن کاملLinear Weingarten hypersurfaces in a unit sphere
In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].
متن کامل